Hall Ticket Number	Hall	licket	Number	:
--------------------	------	--------	--------	---

	IGH IN	Wer Linn	iner.	 		
F	1				1 1	
Ł					§	
L						
I.						

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (CBCS) VI-Semester Main Examinations, May-2019

Numerical Methods

(Open Elective-VI)

Time: 2 hours

Max. Marks: 50

Note: Answer ALL questions in Part-A and any FIVE from Part-B

).No.	Stem of the question	Μ	L	CO	PC
	Part-A (5 \times 2 = 10 Marks)				Andreas
1.	Define absolute error and Relative error.	2	1	1	1
2.	Develop a recurrence formula for finding \sqrt{N}	2	2	1	2
3.	Establish whether the system $1.01x + 2y = 2.01$; $x + 2y = 2$	2	3	2	1
	Is well-conditioned or not.				
4.	Discuss the working procedure of Gauss-Seidal method to solve the linear system of equations.	2	1	2	2
5.	State the intermediate value property.	2	1	1]
	Part-B ($5 \times 8 = 40$ Marks)				
6.a)	Round off the number 75462 to four significant digits and then calculate the absolute error and percentage error.	2	3	1	
b)	Apply Bisection method to find a real root of the equation $\cos x = xe^x$	6	4	1	
7.a)	Derive Newton-Raphson formula.	3	2	1	
b)	Using Newton-Raphson method, find the real root of $x \log_{10} x = 1.2$ correct to four decimal places.	5	4	1	
8.a)	Find the relative error if the number $X = 0.004997$ is i) Truncated to three decimal digits. ii) Rounded off to three decimal digits.	3	3	1	
b)	Using Regula - Falsi method compute the real root of the equation correct to three decimal places $x^3 - 4x - 9 = 0$	5	4	1	
9.a)	Explain the method of Gauss elimination to solve the linear system of equations.	3	2	2	
b)	Apply Gauss elimination method to solve the equations $x + 4y - z = -5$; $x + y - 6z = -12$; $3x - y - z = 4$.	5	3	2	
10.a)	Define ill-conditioned and well-conditioned system of equations.	2	1	2	
b)	Solve by Jacobi's iteration method, the equations 20x + y - 2z = 17; $3x + 20y - z = -18$; $2x - 3y + 20z = 25$.	6	3	2	

Code No.: 16109 N(H)

11.a)	Write the difference between Direct method and iterative method to solve linear system of equations.	2	2	2	1
b)	Apply factorization method to solve the equations 3x + 2y + 7z = 4; $2x + 3y + z = 5$; $3x + 4y + z = 7$.	6	3	2	2
12.a)	Define Inherent error, Rounding error and Truncation error.	3	1	1	1
b)	Solve the equations by using Gauss-Seidal iteration method 28x + 4y - z = 32; x + 3y + 10z = 24; 2x + 17y + 4z = 35.	5	4	2	2

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 & 2)	32%
2	Knowledge on application and analysis (Level-3 & 4)	68%
3	*Critical thinking and ability to design (Level-5 & 6) (*wherever applicable)	

ආආඉංගුංගු

:: 2 ::